施肥の基

土の水はけと水もち

東京農業大学 名誉教授 後藤 逸男 全国土の会 会長

1950年生まれ。東京農業大学大学院修士課程を修了後、同 大学の助手を経て95年より教授に就任し、2015年3月まで教 鞭を執る。土壌学および肥料学を専門分野とし、農業生産現場 に密着した実践的土壌学を目指す。89年に農家のための土と 肥料の研究会「全国土の会」を立ち上げ、野菜・花き生産地 の土壌診断と施肥改善対策の普及に尽力し続けている。現在 は東京農業大学名誉教授、全国土の会会長。

ょ

V

土とは、

物

理

性

化

学性

1

物理性のよい

表1:指の触感による土性判定

土性	指の感触	水もち	水はけ
。 砂土(S)	ザラザラ	×	0
^{きじょうど} 砂壌土(SL)	チョイツル	Δ	0
_{じょうど} 壌土(L)	ツルザラ	0	0
^{しょくじょうど} 埴壌土(CL)	チョイザラ	0	Δ
しょくど 埴土(C)	ツルツル	0	×

砂 0 立が多 壌土、 土が って分類される。 多 壌中に含まれる砂と粘土の割合に 土 砂と粘土をほどほどに含んだ土 (V 土は水もちがよいの 適度に混ざった土が最善であ い土を埴土という。砂が多い土を砂土 土 埴土は土性と呼 土を砂土、 土性とは、 これら で、 ば まさ 砂と 'n

から土 現されることが多 よい 物性 物理 砂の多い土は水はけ 土である。 V 一の物 解説しよう。 土とは、 一が整った三 が 理性・ 最も大切で、 水はけと水もち ·化学性 位 それら そこで、 いがよく、 体 土 0 一の物 Ó 生物性に 土」と表 つなかで のよ 理性

0

0

あ

いう意味である。 に土の性質を大きく支配する性質と

チョ であ ば埴土 る。 こねてみる方法がある。 た少量の あるが、 んどツルツルだが少しだけザラ イツルを砂壌土 この土性を判定するには、 n イザラを埴壌土 ちなみに、 れば壌土 ば 砂 \widehat{C} 少しツルツルを感じるチ 土を親指と人差し指の間で 土 \widehat{S} Ĺ その ほとんどザラザ \widehat{S}_{L} 中間 ッ ということにな CL ル 0 ツ ザ 逆 ý ル , ラ ザ ع であ ル 湿 ´ラで ´ラで う く ザ W ほ ź

12の土性に区分されるが、 あるいは5区分で十分だ。 土性判定には上記のような3区 土壌学では砂と粘土含有量に 現場での

すき間の大きさで 水はけと水もちが決まる

り小さ うことにより、 なかにできるすき間 狭い mm いと水もちがよいのはなぜだろう 砂粒子 と大きく、 砂 が多いと水はけがよく、 すき 0 |粒子は直径0・002~0 方、 間となっ そのために砂が多い 0 間にできるすき間が広 粒径の 粘 水はけと水もちが決 る。 土の粒径はそれ この 小さな粘土で の大きさが違 ような十 粘土が 土で

なる

で、

ある

定

の間

より小

نخ

すき間

では水が土壌粒子の間にと

それよりすき間

が広くなる

表面張力はすき間

が狭いほど大きく

ことで、

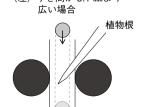
、水の流

れ方は変わ

つ

てくる。

る。


つまりすき間

の大きさが違う

粒子から引っ張られる表面張力を受 は下に落ちようとする重力と両方の

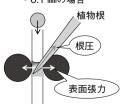
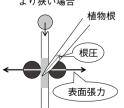

2

図1:土壌粒子のすき間の大きさと水の挙動の相違 すき間が 0.1 mmより

(下層に流れ去る) すき間に水がとどまらないため、 植物根から水を吸収できない が、酸素は供給される


(中央) すき間が 0.0002 ~ 0.1 mmの場合

根圧>表面張力 すき間に水がたまり、表面張力 より根圧が大きいため、植物

根から水を吸収できる

(右) すき間が 0.0002 mm より狭い場合

根圧<表面張力

すき間に水は貯まるが、根圧よ り表面張力が大きいため、植 物根から水を吸収できない

のように土壌粒子 Ó j き間

へん中に水が入ってくると、

その

水 \mathcal{O}

1

農業経営者 2016年7月号

写真1:土のなかの団粒構造

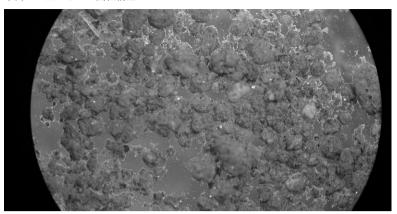
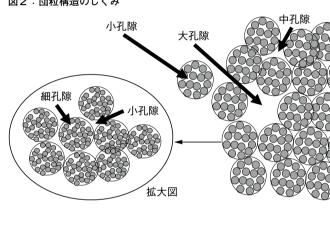



図2:団粒構造のしくみ

が強いため、植物はその水を利用す げる力(根圧)より表面張力のほう そこに水があっても根が水を吸い上 間隔が0・0002㎜以下になると、 欠な酸素を取り込むことができる。 が流れ去った後には、 入り込むので、 ることができない。 一方、図1の右のようにすき間の 根は植物生育に不可 新鮮な空気が

図1の中央のように適度なすき間

子のすき間に水がたまらず下層に流

が0・1 皿以上の場合には、

土壌粒

図1の左のように、すき間の広さ

2~0・1 mとされている。

いが、その間隔はおよそ0・000 い・弱いがあるため一概には言えな れくらいだろう。植物にも乾燥に強 が水を吸収できるすき間の間隔はど 保たれた水を吸収するわけだが、根 流れ去ってしまう。

植物の根は、この土壌粒子の間に

と、水はすき間で保たれずに下層に

収することができない。 れ去ってしまうので、 植物は水を吸 ただし、

> 吸収できるわけだ。 があると、そこに水が蓄えられ、 ことで、植物根は水と酸素の両方を 大きさで水はけと水もちが左右さ から吸収される。 このように、土のなかのすき間の 広さの異なるすき間が存在する 根

3.土のおよそ半分はすき間

することはない。このように土のす ばらく雨が降らなくても植物が枯死 気の占める割合が多くなるが、 めで、その割合(孔隙率)は一般的 のなかに多くのすき間が存在するた 子は沈んでしまう。その理由は、土 になるが、水中に放り込めば土の粒 ることもある。水の密度が1g/皿 常1g/『一前後で、黒ボク土のよう 後となる。すなわち、土の密度は通 に100㎡の土を採取し、その重さ 打ち込んで土の構造を壊さないよう なすき間に水が蓄えられるので、 ク土ではなんと60~70%に達する。 なので、黒ボク土は水より軽いこと な軽い土では0・7g/ ㎡程度にな を測ってみると、およそ100g前 天気が回復すれば、水は流れ去り空 で占められる。その後、 にはおよそ半分、密度の小さな黒ボ このすき間に水と空気が含まれて 容量100。この円筒を畑の表面に 雨が降ればすき間の多くが水 雨がやんで

き間には水と空気が含まれている の住み家にもなっている。 が、このすき間は土壌動物や微生物 4. 水はけと水もちを

両立できる団粒構造

り湿らせたりすることによる無機成 とは土の粒子同士がくっついた構造 うな構造を団粒構造という。団粒構 物を土壌動物と微生物が分解する際 作ればよい。そののりには有機質と にはどうすればよいだろうか。 かでの生物多様性にもつながる。 ることで、水はけと水持ちを両立さ きて、その大きさに多様性を持たせ え、しかも団粒のなかには小さなす さな粒の塊からできていて、このよ 無機質がある。前者は施用した有機 であるので、 せることができるとともに、土のな 造が発達している土ほどすき間が増 粒子もじつは図2のようにさらに小 わかる。ひとつのように見える土壌 な大きさのすき間があることがよく な構造になっていて、大小さまざま それでは、団粒構造を発達させる 畑の土を拡大すると写真1のよう 団粒間には大きなすき間がで 後者は土を適度に乾燥した 土のなかで「のり」 団粒